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In this paper, I prove exponential upper bounds on resolvents of banded infirjle
matrices acting on t P spaces, and on eigenfunctions of self-adjoint banded matrices
corresponding to discrete eigem·alues. The method used is the theory of
holomorphic families of type (A) in the sense of Kato. ('. 1991 Academic Press. inc.

1. I~TRODUCTIO~

Let J be a centered m-banded matrix acting on X = t P( S), where S = II,
71 +, or {I, ..., N}. Recall that for a centered m-banded matrix, m is even,
and

if i;--5: >m/2

(note that a 2-banded matrix is also called tridiagonal). Let T: X -+ X be
defined by

(I:,v)(n)=y(n+ 1), for }E X

(note that if S = {I, "', N}, then (I:,v)(n) = 0 for n ?:- N). If S = 71, then T is
a bounded unitary operator. I shall let V = T*. I may then write

m'2 m2

J=B+ L TkA k + L CkVk

k~l k~l

where Ak> Ck> and B are diagonal matrices. There are two questions that
I wish to address in this paper.
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(i) Given z in the resolvent set of J, what restrictions on the A b Cb

and B need to be made so that J satisfies a bound of the form

where All and A12 are positive numbers and IV is a positive sequence (all
of which depend on z)?

(ii) If J, is a discrete eigenvalue of a self-adjoint matrix J, under what
restrictions on A k and B will there be positive numbers CI' fl, and a
positive sequence IV so that if y is an (2(S) eigenfunction, then

ly(n)1 ~ C 1 exp( -flw(n))

(where CI' fl, and II' depend on y and i.)?

I prove theorems in this paper which answer these questions.
Note that the answer to (ii) is well-known in the case of a second-order

elliptic differential operator. The results which are the best-known are due
to Agmon [1]. His results simplify and collect together earlier results,
using essentially integration by parts and Holder's inequality.

I also show that if J is a self-adjoint matrix with compact resolvent, and
if the A k satisfies certain conditions (see Theorem 3.3 below), then any
eigenvector y in t 2(S) corresponding to an eigenvalue i. has elements which
decay faster then exp( - flw(n)) for any fl > O. This leads to the following
problem, which is related to (ii) above:

(iii) Find conditions on A k and w, and a function f so that if J. is
a discrete eigenvalue which is below the essential spectrum, and if fl <
f( dist(A, 0'ess(J))), then for an t 2(S) eigenfunction y corresponding to ;.,
there is a constant C I > 0 such that

Note that (iii) has been solved in the differential operator case in [1]; see
the results in Simon [18-20] and Davies and Harrell [5] also.

The following theorem (see [8]) gives an answer to (i) for bounded J
and p=2.

THEOREM [Demko, Moss, and Smith, 8]. Let J: X --> X be an m-banded
bounded matrix, and suppose that z rf. (J(J). Then there are constants C> 0,
0<')' < 1 such that

I(J-Z)-I (r, s)1 ~C/lr-5.

This result unified all the previous results which were proved mainly by
workers in the theory of spline approximation (see [6, 7] and the referen-



EXPO)lE!'<TIAL DECAY AND I)lFI~ITE yIATRICES 85

ces in [8]). The research which led to this article was inspired in part by
this theorem. My results extend this theorem in two ways; first, to the case
where p # 2, and second, to a large class of banded matrices which are
possibly unbounded.

The method that I shall use to prove the main theorems below is due to
Combes and Thomas [4] and is called the Combes-Thomas method in the
literature of Schr6dinger operators (see Reed and Simon [17J). This
method was also used in [10, 21] to prove Theorem 3. L I define
E(K): X -> X by

(E(K) y)(n) = exp(iKw('1)) yin),

which is a unitary operator for K real. I then define J(K)=E(K)JE(K)-!,
and find conditions on w(n), Ab and Ck under which {J(K)} forms a
holomorphic family of type (A) in the sense of Kato (see [13, 17 J). The
proofs are very similar to the differential operator versions given in Simon
[18-20].

In Section 2 I state some definitions and results which will be needed in
the later sections, and in Section 3, prove the main results. In Section 4,
I comment on the results proved here, and given some examples.

2. HOLOMORPHIC FArvUUES OF LI~EAR OPERATORS

In this section, I give the definitions and theorems needed in the proofs
to be given in Section 3. These results are taken primarily from [13 J, but
some of them may also be found in [17].

DEFINITIOl'i [Kato, 13]. Let X be a Banach space and {J( K)} a family
of closed operators on X defined for K in some neighborhood of O. Then
{i( K)} is a holomorphic family of linear operators of type (A) in a
neighborhood on K = 0 if the domain of J( /() is independent of K, that is,
q (J( K)) = q, and if the power series

(2.1 )

converges in the disk IKI < p, where p > 0 is independent of y.

Note that this implies J(K) y is differentiable at K = O. If the family
{J(K)} is a family of bounded operators, then this definition implies I!J(KL
is differentiable (see [13]). The properties of such families of operators that
I shail need are contained in the foHowing theorem.
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THEOREM 2.1 [13,17, pp.16, 22-23]. Let {J(K)} be a family of linear
operators depending on the complex parameter K and let J(P), p = 1, 2, ..., be
a sequence of closable linear operators. Suppose fZ(J(P»);::> fZ(J), and that
there are constants a, b, c;?; 0 with

p= 1, 2, ....

(a) The infinite series (2.1) converges for y in the domain of J(K) and
IKI < (a + c) -I, and has a closed extension which forms a holomorphic family
of type (A)for IKI «a+c)-I.

(b) If Z E p(J(O)), then there is a number a> 0 such that for IKI <:x,
ZEp(J(K)), and the resolvent (J(K)-Z)-I is uniformly bounded in the disk

!KI <:x.

(c) If J( K) is self-adjoint for K real and i. is a discrete eigenvalue of
multiplicity p, then there is a r> 0 and there are p not necessarily distinct
single-valued functions AI(K), ..., i.p(K) holomorphic in IKI < I"~ with J.j(O) = i.,
so that i.I(K), ..., ).p(K) are eigenvalues of J(K) for IKI <I'. Furthermore, there
are the on(v eigenvalues of J( K) for 1KI < I'·

For part (a) of this theorem, see [17, p. 16], and for part (b) and (c), see
[17, p. 22, 23]. Note that these results are also contained in Kato [13].

DEFINITION [Kato, 13]. Let F and G be linear operators on a Banach
space f!J. Then G is relatively bounded with respect to F, or G is
F-bounded, if !Z(G);::> fZ(F), and if there are numbers a, b;?; 0 so that

IIGyl1 ~ a IIFyl1 + b Ily I,

for y E 9(F). The smallest number a;?; 0 for which there is a b such that the
above inequality holds is called the relative bound, or F-bound, of G with
respect to F.

3. THE MAIl'; RESULTS

In [21], I proved the following theorem. It is a generalization of a result
of [10].

THEOREM 3.1 [21]. Let J be an m-banded matrix on X, suppose that
w(n) is a nonnegative sequence of real numbers so that the matrices

Wk = diag(w(n) - w(n + k)) and Uk = diag(w(n) - w(n - k))
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are bounded, suppose that W k TkA k and UkCk V k are reiatireiy bounded with
respect to J, and suppose z ~ (J(J). Then there are positire constants ,'vI; and
AI2 such that

!(J - z) -I (r, s)1 ~ M I exp( -M2 j;r(r) - ir(s)!}.

The proof of this result is not given, since I prove Theorem 3.2 belo,v,
which removes the hypothesis that the matrices H'k and Uk are bounded,

THEORBf 3.2 (compare to [10J). Let J be an m-banded matrix on X.
suppose that w(n) is a nonnegative sequence of rea! numbers, and define the
diagonal matrices

Wk = diag(w(n) -11'(n + k)) and [/~ = diag( I\'(n) - \I"(n - k)).

Suppose that there are 11lunbers a, b, C ~ 0 such that

II (Wd P TkAkJ·[ ~ cP-I(a lfr' + b !i}'!1 ),

I(UkyckVkyl: ~cp-I(a !hl! +b II)' i),

p = i, 2, ,.. , for y in the domain of J, and suppose:: $ (J(J). Then there are
positb:e constants lv! I and Jl12 such that

Note that by taking w(n)=n, I recover the theorem of [10]. By taking
the W k and Uk to be bounded, the following inequalities show that
Theorem 3.1 is a corollary of Theorem 3.2:

li( TVkY TkAkyli ~:I Wk!IP-I : JoVkTkAd' I,

II(UkYCkVkyl ~!IUkIP-l '[,~kCkVky:l;

so we may take c=max{IIWkl', !IUkl} in Theorem 3.2. I show in the next
section that Theorem 3.1 applies to a wider class of matrices J than the
version of [10].

Proof The proof uses the Combes-Thomas method as in [lOJ. and as
modified in [21]. I define E(K): X -+ X by

(E(K) y)(n) = exp(iKw(n)) y(n)

(compare to [18, 19J). For any YEQ"(J), letJ(K):t2(J)-+Xbe defined by
(J(K) y)(n) = (E(K) JE(K) -I y)(n). Then

m.'2 m,2

(J(K)y)(n)=B+ I eild»'(nl-ldn+k);TkAk+ I ei/«W(fI)-Wlli-kliCkV\
k~ [ k~ l

64066[-"
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(3.1 )

by expansion of the exponentials. By hypothesis, Theorem 2.1 (a) guaran­
tees that J(K) has an extension to complex K which forms a holomorphic
family of type (A). Also, Theorem 2.1 (b) guarantees that there is f3 > 0
such that if ZEp(J(O» then ZEp(J(K» for IKI <f3, and that the operator
norm of (J(K)-Z)-I is uniformly bounded in K for IKI <f3. A simple
calculation shows that

(J( K) - z) -I = E( K)( J - z) -I E( K) - 1 (3.2)

for K real. Since (J(K)-Z)-I is a holomorphic family of type (A), then this
identity must also be true for complex K. By Theorem 2.1 (b), there is a
constant M 1 > 0 such that

(3.3 )

since the operator norm dominates the absolute value of any element of a
bounded matrix. Here, 11·1 op is the usual operator norm. Let A12 > 0 be a
number such that IKI = liM21<f3. Then using this K and (3.2) in (3.3) gives

lexp( - w(r) A12 )(J - z) -I (I', s) exp( w(s) M 2 )1 ~ M 1 ,

and using K* and (3.2) in (3.3) gives

lexp(w(r) M 2 )(J -Z)-I (r, s) exp( -w(s) M 2 )1 ~ jUl'

This proves the theorem. I

THEOREM 3.3 (compare to [18-20]). Letp=2,letJ:X-+Xbeaself­
adjoint m-banded matrix, let 11l(n) be a nonnegative sequence such that the
matrices

Wk = diag(w(n) - wen + k)) and Uk = diag(lI'(n) - wen - k))
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are bounded, and suppose that rVk T k
A k and Uk A k Vk are re/atire!y bounded

;rith respect to l,

(a) If 1 has compact resohent, the relatiL'e bounds of rVk T kA k and
L'kAkVk are zero, and ly=i.y, yEX (so i.E!Jdisc(J)), then for an}' :x>O
there is a constant C I > 0 such that

ly(n)I';;;; C 1 exp{ -:)(;r\I1)).

(a) If i. E ()disc(l) and 1)' = i.y for y E X, then for some constants fl,
C2 >O,

ly(n)I';;;; C2 exp( -,wr(n)), (3.4 )

Proof I give a proof that is almost identical to the proof of a similar
theorem for Schr6dinger operators (see [17-20]). The key to this proof is
the following lemma of O'Connor [15].

LB1MA [15 or 17]. Let E(K): H --+ H be a unitary group parametrized
by R. Suppose P(K) is a projection-valued holomorphic function v,'hich is
given on a ball iKI < [3, P(O) is of finite rank, and suppose for :fJi < [3,
Ii\: + 111 < [3, IJ real

Then for any J E Range(P(O)), E(K) Y has a holomorphic continuatioll from
iR to L1 = {KEC: IIm(K)1 <[3}.

For a p:-oof of this, see [15] or [17, pp. 22,23]. Note that E(K))' has
a holomorphic continuation to L1 if and only if

{exp(all'(n)) YIn)} is in X.

for any a < p.
As in the proof of Theorem 1, define E(K) and l( K). Then from (3.1) and

(3.2), J(K) is a holomorphic family of type (A), for !KI < p, where p > O.
Since i. is an eigenvalue of 1 of finite multiplicity, there are q eigenvalues
l. l (K), ..., i.q(K) in the discrete spectrum of J(K), and the i.j(K) are analytic
functions in iKI <[3, for some f3 possibly smaller than p. Now J(K) is
unitarily equivalent to 1 for K real, so i.;(K) = i. for K real, and thus
i.;(K)=i. for !KI <[3 (by analyticity). This type of argument is in [20
where it is used in the multiparticle Schr6dinger case. Thus, ;. E (J dis~(J( K

for lKI < [3. Let

,
P(K)= -(2ni)~1 I R(l(K),w)dw.

·c
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where R(J(K), w) is the resolvent of J(K), and C is the circle Iw -).1 = e
(note that e must be chosen so that the circle contains only the eigenvalue
). and no other part of the spectrum of J). Then P(O) is the projection onto
the eigenspace associated with L Note that under the assumptions in either
(a) or (b), P(O) has finite rank.

To prove (b), note that for 1111 < {3, II] + KI < {3,

By the lemma of O'Connor, for any y E Range(P(O)), E(K) y has a
holomorphic continuation to LI. By the statement immediately after the
lemma, this proves that

{exp(aw(n)) y(n)} is in X,

for any a < {3.
To prove (a), note that if the resolvent of J is compact, then the resol­

vent of J(K), as defined in the proof of Theorem 3.1, is compact for K real,
and thus compact for all K. Also, by assumption and Theorem 2.1 (a), J(K)
is an entire family of type (A), so P(K) has a holomorphic extension to LI
with {3 = C£J. From the lemma of O'Connor, this shows that for any a> 0,

{exp(aw(n)) y(n)} is in X,

so (a) is proved. I
Note that when w(n) = n, Theorem 3.3(b) is a discrete version of a

theorem of Snol' (see [11]). There are also versions of these theorems
which replace relative boundedness with relative form boundedness. This is
connected with the definition of an operator J by a quadratic form, and
requires p = 2; that is, it is a Hilbert space theory. Also, it requires J to be
m-sectorial; that is, the numerical range of J is contained in a sector of the
complex plane. I shall not give these versions here, but let the reader for­
mulate them. For the relevent theory of holomorphic families of quadratic
forms, see [13 or 17].

For the differential operator -LI + q on e(IR V
), where q is bounded

below, it is known that if f1 > 0 satisfies

where). is a discrete eigenvalue below the essential spectrum, and if u is
an L 2( W) eigenfunction of - LI + q corresponding to )., then there is a
constant C> 0 so that

lu(x)1 ~ C exp( - W),
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where r = Ixl- This was first proven by SnoI' (see [1, 11, and 20]). I conjec­
ture that a similar statement is true for the infinite matrix case. Note that
I have answered a special case of this in Theorem 3.2(b). In that case, any
II> 0 will be a rate of decay. In [21], I began a study of this conjecture.
and the results will appear in another paper.

4. SOME EXA\fPLES

In [8], Theorem 3.1 was proved with w(n) = ll. I give some examples to
show that Theorem 3.1 generalizes to cases not covered by the result of
[8].

EXA\fPLE 1 (Laguerre polynomials [23]). Consider the difference
equation

(n+ 1) y(n+ 1)-(2n+ 1) y(n)+ny(n-l)= -.z)'(n). (4.1)

This is the difference equation for the Laguerre polynomials. Let
Al = diag(n) and B = diag(2n + 1). Then the matrix

has spectrum [0, x;), since the weight function for the Laguerre polyno­
mials is exp( -x). Suppose that z¢ [0, x;). It is known [14] that the resol­
vent matrix elements (f _.z)-1 (r. s) are given by

(4.2)

where r> = max {r, s}, and r< = min {r, s}, and

is independent of n. It is also known that there are two solutions of (4.1),
y - and y -, with

y + (n; z) - n -1 4 exp(2(n + 1':2)1 2 Im( - z) 1 2) 1Jl (z),

y-(n; z) _n- 1<4 exp( -2(n + 1/2)1 2 Im( _.z)l 2) rP2(Z),

where ¢J land 1J2 are functions analytic on the cut plane iC \ [0, x;). This is
because solutions of (4.1) can be written as confluent hypergeometric
functions (see Masson [14]). Using these results in (4.2) I obtain
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for rand s large enough, where C> 0 is a constant which depends on z. In
fact, the asymptotic results quoted show that if I divide the left-hend side
by the right-hand side and take the limit as rand 5 tend to x, I get 1.
Thus, this is the best possible bound. To show that Theorem 3.1 applies in
this case, I use the following argument to choose the sequence w(n). Note
that

TA!J'(n) = (n + 1) y(n + 1) and Al T*y(n) = ny(n -1).

I shall choose w(n) so that H/I TAl and UIAIT* are bounded. To do this
requires that I solve

w(n+ 1)-w(n)=n- l, n= 1,2, ....

A solution of this is the digamma function ljJ(n) defined by

ljJ(n) = r'(n)/r(n).

From [9J,

ljJ(n) = log(n -1) - (2n)-1 + 0(1), as n ---+ x.

Thus, I shall take w(n) = ljJ(n). Then it is immediate that WI TAl and
UIA I T* are bounded matrices. Thus, they are relatively bounded with
respect to J. Theorem 3.1 applies and shows that there are positive
constants All and lvfz such that

I(J-z)-I (r, s)1 ~llII exp( -Mz lljJ(r)-ljJ(5)1).

This bound is not as good as the best bound obtained above. This result
also shows that Theorem 3.1 with w(n) = 1 (that is, the result of [8 J) does
not apply to this matrix J. Indeed, if Theorem 3.1 holds with w(n) = 1, then
it gives the bound

I(J - Z)-I (r, 5)1 ~ M I exp( - Alz Ir - sl).

But this is better than the best bound given above, and yields a
contradiction. Thus, Theorem 3.1 applies when the result of [8J (that is,
Theorem 3.1 with w(n) = n) does not. A referee has suggested the following
alternate proof of this result, which I only sketch here. If TAl and A I T*
were relatively bounded with respect to J, then for sufficiently small e > 0,
J + e( TAl + A I T*) would be bounded below. But this contradicts the fact
that, for the Meixner-Pollaczek polynomials, the spectrum is (- 'x, ox;).
Note that the conclusion of Theorem 3.1 for the Laguerre polynomials is
not the best possible.
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The next example shows that Theorem 3.1 can give the best possible
bound on the resolvent.

EXAMPLE 2 (Hermite polynomials [23]). Consider the difference equa··
tion

(n+ 1)12 y(n+ 1)+n 12y(n-l)=zy(n).

This is the difference equation for the Hermite polynomials. Let
Al = diag(n 12) and B = O. Then the matrix

J= TAl +A 1 T*

has spectrum ( - x, x), since the Hermite polynomials are orthogonal on
(- 'X. Jj) with respect to the weight function exp( _x2

). Suppose
z ¢ ( - x" x). Equation (4.3) can be solved in terms of the parabolic cylin­
der functions (see Masson [14]), and by using (4.2), the best possibie
bound on (J -.::) -1 (r, 5) is given by

iiJ -.::) -1 (r, 5)1 ::::; Cr -145-1 4 exp( - lm(.::) i,.1 2 - 51 21) ,p(z),

for lm(z) > 0, and

iV -.::) -1 (f, 5)i ::::; Cr- 1 4S -1 4 exp(lm(z) ,;-12 - 5: 2i) !fi(z),

for Im(z) < 0, where ljJ and r/J are functions analytic for lm(z) # 0, and the
bounds hold for all r, 5 large enough. Here, C> 0 is a constant. That this
is the best possible bound is shown by the asymptotic results found in
Erd61yi [9], and by an argument similar to that used in Example 1. Let
\I"(n) = 11! 2. Then it easily seen that WI TAl and CIA 1 T* are bounded. so
they are relatively bounded with respect to 1. Thus, Theorem 3.1 applies.
and there are positive constants Af1 and A12 such that

III - Z)-l (r, s)l::::; Af1 exp( -J12 i r 1 2 _ 5 12 1).

In a manner similar to that of Example 1, it can be shown that the result
of [8] does not apply to this example.

EXA~IPLE 3 (Charlier polynomials [14, 22 J). Now consider the dif­
ference equation

(n + 1)12 yin + 1)- (z-n -1) yin) +n l
2y (n -1) =0. (.1.4)

This is the difference equation associated with the Charlier polynomials.
Let A 1 be the same as in Example 2, and let B = diag( n - 1). Then the
matrix
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has purely discrete spectrum {O, 1,2, ... }. This follows since the Charlier
polynomials are orthogonal on this discrete set with respect to the weight
(n!)-' (see [14]). Note that these points in the spectrum are discrete eigen­
values with multiplicity at most 1. Using w(n)=n1:2 again shows that
Theorem 3.3(b) applies. Thus, if ;. is in the spectrum of J, and Jy = icY,
where y is in {2(Z +), then there are constants C, 11 > 0 such that

This result appears to be new.

EXAMPLE 4 (attractive Coulomb potential polynomials [2]). Consider
the radial Hamiltonian

1 d 2 Z
H= -- -+­

2 dr 2 r'

where Z is the electronic charge. I assume that Z < 0, so the potential is
attractive. Note that this is the physical range of values of Z. Let tjJ be a
solution of (H-£)tjJ=O. In [2J, tjJ is expanded in the series

or.;

tjJ(r)= L (n+2)-'bf/(x)ft?f/(r),
fl=O

where

a=2Z,

x= (£-1/8)(£+ 1/8)-',

ft?f/(r) = re -r/2 L~(r)

(L:' are the generalized Laguerre polynomials), and the bll(x) satisfy the
difference equation

(n + 1) bf/ + ,(x) - 2[(n + a)x - a] bll(x) + nbf/_'(x) = O.

This difference equation is a special case of the difference equation satisfied
by the Pollaczek polynomials,

bf/(x) = P~(x; 2Z, -2Z),

where P~(x; a, b) are the Pollaczek polynomials (see [2,22]). These poly­
nomials are orthogonal on (- 00, (0), and the explicit orthogonality is
given in Section 4 of [2]. Note that I am assuming that a is in Region II
in the language of [2], that is,

-1/2 <a<O,
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since this is the physical value of the parameter. Let

J= B+ TA +AT*

be the infinite matrix \\lith A and B the diagonal matrices defined by

. ( n \A = dtag 1 7 . " •
2(n+a)' - (n+a-l)i-)-

B = diag (_a ).
n+a

95

The spectrum of J consists of the interval [ - 1. 1] and discrete eigenvalues
x p < -1 given by

and x p --+ -1 as p--+ x (see [2]). Let \r(n)=n. Then Theorem3.3(b)
applies, so if y E t 2el: +) solution of J.r = x p y, then there are constants C,
j1 > 0 so that

ly(n)1 ~ C exp( - fln).

This result was not given in [2].

There are other examples of Theorems 3.1 and 3.3 that I could give here.
For instance, consider the radial part of the quantum mechanical harmonic
oscillator, whose Hamiltonian H is

1 d 2 1
H= -- -+-+ (C + 1,")) r~2 dr~ 21'2 ,-, ..

As shown in [2], this Hamiltonian can be diagonalized by using the
properties of the generalized Laguerre polynomials. The resulting difference
equation is a special case of the Meixner, or Meixner-Pollaczek polyno­
mials, depending on the sign of 1+ lie. For C> -1/2, that is for the
physical case, the corresponding polynomials are the Meixner polynomials.
and the spectrum is discrete, as is well-known (see [2J and the references
there for these results). Other examples from the literature are the polyno­
mials studied by Carlitz [3], the generalized Chebyshev polynomials
studied by Ismail and Mulla [12], the Heun and Hautot polynomials
[24], and the Wilson polynomials [25]. It has been shown by Tater [23 J
that the Hamiltonian

d
2

2 4 6H= --,+ax +bx +cx.
dx-

C>O,
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can be associated with a three-term recurrence relation, that is, a difference
equation. Note that an application of Wilson's polynomials to quantum
mechanical scattering has been given in [16].
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